
Freeze Tensorflow models and serve on web
In this tutorial, we shall learn how to freeze a trained Tensorflow Model and serve it on a webserver. You can do this for any network you have trained but we shall use the trained model for dog/cat classification in this earlier tutorial and serve it on a python Flask webserver. So you trained a new […]
Continue Reading
A quick complete tutorial to save and restore Tensorflow models
In this Tensorflow tutorial, I shall explain: How does a Tensorflow model look like? How to save a Tensorflow model? How to restore a Tensorflow model for prediction/transfer learning? How to work with imported pretrained models for fine-tuning and modification This tutorial assumes that you have some idea about training a neural network. Otherwise, please […]
Continue Reading
ResNet, AlexNet, VGGNet, Inception: Understanding various architectures of Convolutional Networks
Convolutional neural networks are fantastic for visual recognition tasks. Good ConvNets are beasts with millions of parameters and many hidden layers. In fact, a bad rule of thumb is: ‘higher the number of hidden layers, better the network’. AlexNet, VGG, Inception, ResNet are some of the popular networks. Why do these networks work so well? How are […]
Continue Reading
Image Segmentation using deconvolution layer in Tensorflow
In this series of post, we shall learn the algorithm for image segmentation and implementation of the same using Tensorflow. This is the first part of the series where we shall focus on understanding and be implementing a deconvolutional/fractional-strided-convolutional layer in Tensorflow. Why is deconvolutional layer so important? Image segmentation is just one of […]
Continue Reading
Keras tutorial: Practical guide from getting started to developing complex deep neural network
Keras is a high-level python API which can be used to quickly build and train neural networks using either Tensorflow or Theano as back-end. This tutorial assumes that you are slightly familiar convolutional neural networks. You can follow the first part of convolutional neural network tutorial to learn more about them. In this quick tutorial, we shall […]
Continue Reading